3.7 population genetics and Hardy-Weinberg

Saturday, February 20, 2021 12:53 PM

Thm 3.2: Hardy-Weinberg Law

24 = proportion at the Assume in a parent population, a particular gene has alleles A and a, with initial proportions p_0 and q_0 . In addition:

- 1. Mating is random.
- 2. There is no variation in the number of progeny from parents of different genotypes
- 3. All genotypes have equal survival probability.
- 4. There is no immigration nor emigration.
- 5. There are no mutations.
- 6. Generations are nonoverlapping.

Then in generation *t*, the allele frequencies do not change:

$$p_{\rm t} = p_0$$
 and $q_t = q_0$

Additionally, the genotypic frequencies do not change from the second generation onwards:

$$P_{AA} = p_0^2$$
, $P_{Aa} = 2p_0q_0$, and $P_{aa} = q_0^2$.

 $P = \frac{2NP_{AA} + NP_{Aa}}{2N} = P_{AA} + \frac{P_{Aa}}{2}$ $q = 1 - p = \frac{P_{Aa}}{2} + p_{aa}$

Proof of Hardy-We	inberg Law								
	Table 3	<u>Table 3.1</u>		Offspring Fraction			Next generation		
Case 1: AA × AA	Mating	Frequency	AA	Aa	аа	AA	Aa	аа	
Frequency: PAA · PA= PAA	AA x AA	P_{AA}^2	1	0	0	P_{AA}^2	0	0	
	P _{AA} AA x Aa	$2P_{AA}P_{Aa}$	1/2	1/2	0	$P_{AA}P_{Aa}$	$P_{AA}P_{Aa}$	0	
,,,,,	AA x aa	$2P_{AA}P_{aa}$	0	1	0	0	$2P_{AA}P_{aa}$	0	
Offspring: A A	Aa x Aa	P_{Aa}^2	1/4	1/2	1/4	$\frac{P_{Aa}^2}{4}$	$\frac{P^2_{Aa}}{2}$	$\frac{P_{Aa}^2}{4}$	
A AN INA	all HH Aaxaa	$2P_{Aa}P_{aa}$	0	1/2	1/2	0	$P_{Aa}P_{aa}$	$P_{Aa}P_{aa}$	
A AAAA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P_{aa}^2						
Care Z: AA × Aa		$P'_{AA} = F_{\mu}$	$AA \rightarrow F$	PAAAa	$+ \frac{P_{A_{a}}^{2}}{4}$	= (P,	$+\frac{P_{A}}{2}$	<pre>>²=</pre>	p2
Frequency: PAPAA + 1	P PAA = 2 PAA PAA P	$A_{a} = P_{AA}$	+PAn +	2 PAP	, + -	$\frac{p^2}{A_n} + P_{\mu}$	A. Paa	2	
Offspring $A = 2(P_{AA} + P_{Aa}/2)(P_{aa} + P_{Aa}/2) = LPQ$									
A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	507. An P	aa = q	٤						

Biological Fitness

Suppose survival rates to adulthood w_{AA} , w_{Aa} , w_{aa} depend on the genotype. Then Hardy-Weinberg equilibrium does not hold.

fitness

Def. The mean fitness	$W_t = P_t^2 W_{AA} + 2$ P_{AA}	$P_{t} Q_{t} W_{Aa} + Q_{t}^{2} W_{Aa} + Q_{t}^{2}$	'aa of	next :	jenerats.
			AA	Aa	aa
Case I: AA		Juvenile frequencies	p^2	2pq	q^2
2		Relative survival rates	W _{AA}	w _{Aa}	Waa
Juvenile trequery: p	$\overline{}$	Relative adult frequencies	$p^2 w_{AA}$	$2pqw_{Aa}$	$q^2 w_{aa}$
Survival rate: WAA		Adult frequencies	$\frac{p^2 w_{AA}}{w_t}$	$\frac{2pqw_{Aa}}{w_t}$	$\frac{q^2 w_{aa}}{w_t}$
Adult Frequency = P ² WAA					

Can write a difference equation.
Frequency of allele A at time
$$t+1: P_{t+1} = P_{AA}^{t+1} + \frac{P_{AA}}{2}$$

$$\implies P_{t+1} = \frac{P_t^2 w_{AA}}{w_t} + \frac{P_t Q_t w_{AA}}{w_t} + \frac{P_t Q_t w_{AA}}{w_t}$$
Aside: if $w_{AA} = w_{AA} = w_{AA} = 2$,
 $P_{t+1} = \frac{P_t}{w_t} \left[P_t w_{AA} + Q_t w_{AA} \right]$

$$P_{t+1} = \frac{P_t}{w_t} \left[P_t w_{AA} + Q_t w_{AA} \right]$$

$$P_{t+1} = \frac{P_t}{w_t} \left[P_t w_{AA} + (I \cap P_t) w_{AA} \right]$$

$$P_{t+1} = \frac{1}{w_t} \left[P_t^2 w_{AA} + P_t (I \cap P_t) w_{AA} \right]$$

Normalize by survived vates
WLOG, let
$$w_{AA} = l - s$$
, $w_{Aa} = l$, $w_{aa} = l - r$,
where $r, s < l$ but r, s can be acgutive,
which ensures that w_{AA} , w_{Aa} , $w_{aa} > 0$.
Then $w_t = \rho_t^2(1-s) + 2\rho_t q_t + q_t^2(1-r) = 1 - \rho_t^2 s - (1-\rho_t)^2 r$
 $= \rho_{t+1} = \frac{\rho_t [\rho_t(1-s) + (1-\rho_t)]}{1 - \rho_t^2 s - (1-\rho_t)^2 r} = \frac{\rho_t (1-\rho_t s)}{1 - \rho_t^2 s - (1-\rho_t)^2 r} = f(\rho_t)$

$$f'\left(\frac{r}{r_{f_{s}}}\right) = \frac{2rs - r - s}{rs - r - s} \qquad \left(\frac{r}{p} = \frac{r}{r + s}\right)$$
For $0 < \frac{r}{r + s} < 1$, either $r, s > 0$ $r s > 0$.
or $r, s < 0$ $r s > 0$.
If $r, s < 0$, then $C = rs - r - s > 0$, $r f'(\frac{r}{p}) = \frac{rs + C}{C} > 1$, so unstable.
If $r, s \in (0, s)$, then $rs < r + s$, so $2rs < r + s$ (since $f'(\frac{r}{p}) > 0$)

$$=) f'(\overline{p}) = \frac{r + s - 2rs}{r + s - rs} < 1, so stable,$$

In this last case, where we are and when > when, so the heteroty go te has an advantage, and so both alleles remain present.