3.7 population genetics and Hardy-Weinberg

Mendelian genetics

- Genetics is the study of heredity and inherited variation
- e.g. Hair color, eye color, pea plant height
- DNA (deoxyribonucleic acid) carries genetic information, in the form of genes

$A a, A$
$a a$
- Diploid organisms have two copies of every gene, sometimes slightly different, which are the variants of the gene called alleles
- With sexual reproduction, the offspring gets one copy from each parent, which causes mixing of the alleles.

Thy 3.2: Hardy-Weinberg Law

Assume in a parent population, a particular gene has alleles A and a, with initial proportions p_{0} and q_{0}. In addition:

1. Mating is random.
2. There is no variation in the number of progeny from parents of different genotypes
3. All genotypes have equal survival probability.
4. There is no immigration nor emigration.

$$
p=\frac{2 N P_{A A}+N P_{A a}}{2 N}=P_{A A}+\frac{P_{A a}}{2}
$$

5. There are no mutations.
6. Generations are nonoverlapping.

Then in generation t, the allele frequencies do not change:

$$
q=1-p=\frac{P_{A_{a}}}{2}+P_{a a}
$$

$$
p_{\mathrm{t}}=p_{0} \text { and } q_{t}=q_{0}
$$

Additionally, the genotypic frequencies do not change from the second generation onwards:

$$
P_{\mathrm{AA}}=p_{0}^{2}, P_{A a}=2 p_{0} q_{0}, \text { and } P_{a a}=q_{0}^{2}
$$

Proof of Hardy-Weinberg Law

Case 1: $A A \times A A$

Frequency: $P_{A A} \cdot P_{A A}=P_{A A}^{2}$
Offspring:

$$
\begin{array}{l|l|l}
& A & A \\
\hline A & A A & A A \\
\hline A & A A & A A \\
\hline
\end{array}=\text { all } A A
$$

		Offspring Fraction			Next generation		
Mating 3.1 Frequency AA Aa aa AA Aa aa AA x AA $P_{A A}^{2}$ 1 0 0 $P_{A A}^{2}$ 0 0 AA x Aa $2 P_{A A} P_{A a}$ $1 / 2$ $1 / 2$ 0 $P_{A A} P_{A a}$ $P_{A A} P_{A a}$ 0 AA x aa $2 P_{A A} P_{a a}$ 0 1 0 0 $2 P_{A A} P_{a a}$ 0 Aa x Aa $P_{A a}^{2}$ $1 / 4$ $1 / 2$ $1 / 4$ $\frac{P_{A a}^{2}}{4}$ $\frac{P_{A a}^{2}}{2}$ $P_{A a}^{2}$ Aa x aa $2 P_{A a} P_{a a}$ 0 $1 / 2$ $1 / 2$ 0 $P_{A a} P_{a a}$ $P_{A a} P_{a a}$ aa x aa $P_{a a}^{2}$ 0 0 1 0 0 $P_{a a}^{2}$							

Case 2: $A A \times A a$

$$
P_{A A}^{\prime}=P_{A A}^{2}+P_{A A} P_{A_{a}}+\frac{P_{A a}^{2}}{4}=\left(P_{A A}+\frac{P_{A_{a}}}{2}\right)^{2}=P^{2}
$$

Frequency: $P_{A A} P_{A a}+P_{A_{a}} P_{A A}=2 P_{A A} P_{A_{a}} \quad P_{A_{a}}^{\prime}=P_{A A}+P_{A_{a}}+2 P_{A A} P_{a a}+\frac{P_{A_{a}}^{2}}{2}+P_{A_{a}} P_{a a}$

$$
=2\left(P_{A A}+P_{A a} / 2\right)\left(P_{a a}^{2}+P_{A_{a}} / 2\right)=2 p q
$$

$$
p_{a a}^{\prime}=q^{2}
$$

Biological Fitness

Suppose survival rates to adulthood $\overparen{w_{A A}, w_{A a}, w_{a a}}$ depend on the genotype. Then Hardy-Weinberg equilibrium does not hold.
Def. The mean fitness $w_{t}=\underbrace{p_{t}^{2}}_{P_{A A}} w_{A A}+\underbrace{2 p_{t} q_{t}}_{P_{A a}} w_{A_{a}}+\underbrace{q_{t}^{2}}_{P_{a a}}{ }^{2}{ }_{\text {aa }}$ of next generation

Care 1: AA

Jureaite frequay: p^{2}
Survival rate: $w_{A A}$

Adult frequency $=\frac{p^{2} w_{A A}}{w_{t}}$

	AA	Aa	aa
Juvenile frequencies	p^{2}	$2 p q$	q^{2}
Relative survival rates	$w_{A A}$	$w_{A a}$	$w_{a a}$
Relative adult frequencies	$p^{2} w_{A A}$	$2 p q w_{A a}$	$q^{2} w_{a a}$
Adult frequencies	$\frac{p^{2} w_{A A}}{w_{t}}$	$\frac{2 p q w_{A a}}{w_{t}}$	$\frac{q^{2} w_{a a}}{w_{t}}$

Can write a difference equation.
note: index, nt power
Frequacy of allele A at time $t+1: \quad P_{t+1}=P_{A A}^{\tilde{t+1}}+\frac{P_{A_{a}}^{t+1}}{2}$

$$
\begin{aligned}
\Rightarrow p_{t+1} & =\frac{p_{t}^{2} w_{A A}}{w_{t}}+\frac{p_{t} q_{t} w_{A_{a}}}{w_{t}} \\
p_{t+1} & =\frac{p_{t}}{w_{t}}\left[p_{t} w_{A A}+q_{t} w_{A_{a}}\right] \\
p_{t+1} & =\frac{p_{t}}{w_{t}}\left[p_{t} w_{A A}+\left(1-p_{t}\right) w_{A_{a}}\right] \\
p_{t+1} & =\frac{1}{w_{t}}\left[p_{t}^{2} w_{A A}+p_{t}\left(1-p_{t}\right) w_{A a}\right]
\end{aligned}
$$

Aside: if $w_{A A}=w_{A a}=w_{a a}=1$, then $w_{t}=1$, so $p_{t+1}=p_{t}$, and we get HardyWeinberg equilibrium.

Normalize by survival rates
WLOG, let $w_{A A}=1-s, \quad w_{A a}=1, \quad w_{a a}=1-r$,
where $r, s<1$ but r, s con be negative, which ensures that $w_{A A}, \omega_{A_{a}}, w_{a a}>0$.
Then $w_{t}=p_{t}{ }^{2}(1-s)+2 p_{t} q_{t}+q_{t}{ }^{2}(1-r)=1-p_{t}{ }^{2} s-\left(1-p_{t}\right)^{2} r$

$$
\Rightarrow \quad p_{t+1}=\frac{p_{t}\left[p_{t}(1-s)+\left(1-p_{t}\right)\right]}{1-p_{t}^{2} s-\left(1-p_{t}\right)^{2} r}=\frac{p_{t}\left(1-p_{t} s\right)}{1-p_{t}^{2} s-\left(1-p_{t}\right)^{2} r}=f\left(p_{t}\right)
$$

$$
\begin{aligned}
& p_{t+1}=\frac{p_{t}\left(1-p_{t} s\right)}{1-p_{t}^{2} s-\left(1-p_{t}\right)^{2} r}=f\left(p_{t}\right) \quad \bar{p}=0, \\
& f^{\prime}(p)=\frac{(1-s) p^{2}+2(1-s)(1-r) p(1-p)+(1-r)(1-p)^{2}}{\left(1-p^{2} s-r+2 r p-r p^{2}\right)^{2}}
\end{aligned}
$$

Note: $f^{\prime}(p)>0$ for $0 \leq p \leq 1$ and $r, s<1$

$$
f^{\prime}(0)=\frac{1-r}{(1-r)^{2}}=\frac{1}{1-r}
$$

When $r<0,\left|f^{\prime}(0)\right|<1$, so 0 is stable.

$$
f^{\prime}(1)=\frac{1}{1-s}
$$

when $s<0,\left|f^{\prime}(1)\right|<1$, so 1 is stable.

$$
f^{\prime}\left(\frac{r}{r+s}\right)=\frac{2 r s-r-s}{r s-r-s} \quad\left(\bar{p}=\frac{r}{r+s}\right)
$$

For $0<\frac{r}{r+s}<1$, either
or $r, s<0\} r s>0$.

If $r, s<0$, then $C=r s-r-s>0$, , $f^{\prime}(\bar{p})=\frac{r s+C}{C}>1$, so unstable.
If $r, s \in(0,1)$, then $r s<r t s$, so $2 r s<r$ ts (since $f^{\prime}(\bar{p})>0$)

$$
\Rightarrow f^{\prime}(\bar{p})=\frac{r+s-2 r s}{r t_{s}-r s}<1 \text {, so stable. }
$$

In this last case, ${ }_{w_{A a}}>w_{\text {aa }}$ and $w_{A_{a}}>w_{A A}$, so the heterozygote has an advantage, and so both alleles remain present.

